
ISRAEL JOURNAl_ OF MATHEMATICS .  Vo l  54. No. 2. 1986 

BANACH SPACES WITH 
A WEAK COTYPE 2 PROPERTY 

BY 

VITALI D. MILMAN" AND GILLES PISIER h 
"I.H.E.S., Paris VI, and Tel Aviv University, Ramat Aviv, Israel; and 

"I.H.E.S. and Equipe d'Analyse, Universitd Paris VI, 4, Place Jussieu, 75230 - -  Paris Cedex 05, 
France 

A B S T R A C T  

We study the Banach spaces X with the following property: there is a number ~5 
in ]0,1[ such that for some constant C, any finite dimensional subspace E CX 
contains a subspace F C E with dim F_-> ~ dim E which is C-isomorphic to a 
Euclidean space. We show that if this holds for some ~ in ]0, 1[ then it also holds 
for all ~5 in ]0,1[ and we estimate the function C = C(~5). We show that this 
property holds ift the "volume ratio" of the finite dimensional subspaces of X 
are uniformly bounded. We also show that (although X can have this property 
without being of cotype 2) L2(X) possesses this property iff X if of cotype 2. In 
the last part of the paper, we study the K-convex spaces which have a dual with 
the above property and we relate it to a certain extension property. 

In [5], it is p roved  that  every  Banach  space X of co type  2 en joys  the fo l lowing 

p r o p e r t y :  

F o r  each e > 0, there  is a n u m b e r  6, = & ( e )  > 0 such that ,  

every  finite d imens iona l  subspace  E C X conta ins  a subspace  

(*) F C E of d i m e n s i o n  dim F => ~5~dim E which is 

(1 + e ) - i s o m o r p h i c  to a Euc l i dean  space.  

Conver se ly ,  this p r o p e r t y  impl ies  that  X is of co type  q for eve ry  q > 2 .  

H o w e v e r ,  the  p a p e r  [5] also includes  an example  due  to W. B. Johnson  showing 

that  the  p reced ing  p r o p e r t y  (*) does  not  imply  that  X is of co type  2. 

In the p resen t  note ,  we will inves t iga te  the  a b o v e  p r o p e r t y  (*) in more  deta i l .  

W e  will give an equ iva len t  fo rmula t ion  which r e sembles  the  no t ion  of " c o t y p e  

2",  f rom which it will fol low easi ly that ,  if p _--- 2, L , ( X )  has the a b o v e  p r o p e r t y  iff 

X is of co type  2. 
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Furthermore, we will be concerned by the following related question: 

Consider a space X with the above property (*) and fix a number 8 in ]0,1[ 

(with 6 > 60). Is it true that every finite dimensional E C X contains a subspace 

F C E of dimension dim F->_ ~ dim E which is Ce-isomorphic to a Euclidean 

space, where C~ is a number depending on 6 only? 

We will answer this question affirmatively (giving an estimate of C~ when 

(~---) 1) and we will also show that the above property (*) is equivalent to the 

following: 

f There is a constant A such that every finite dimensional subspace E C X 
(**) satisfies vr(E)=< A, where vr(E) denotes the "volume ratio" 

in the sense of [23], which is defined below. 

For a finite dimensional (in short f.d.) space E, let us denote by BE the unit 

ball of E and let £E be the maximal volume ellipsoid included in BE; then the 

"volume ratio" of E is defined as 

(voltB )y '° 
v r ( E ) = \ v o l ( ¢ E ) /  ' d i m E = n .  

The proof of the implication (*) ~ (**) is closely related to the recent paper 

[1]. There, it is proved that every cotype 2 space possesses the preceding 

property (**). Our proof is different from the one in [1], and yields a somewhat 

stronger statement even in the case when E is of cotype 2. 

Recall that by the results of [10] (or [5]), if a f.d. space E is C-isomorphic to a 

Euclidean space, then it contains for each e > 0 a subspace F C E which is 

(1 + e)-isomorphic to a Euclidean space and of dimension dim F >= &'dim E 

where ,3"> 0 is a number depending only on C and e > 0. Therefore, in the 

above property (*) we may as well take e fixed (say e = 1). In the sequel, we will 

denote by Ps the orthogonal projection onto a subspace S of a Hilbert space. 

Let us recall the definition of the Banach-Mazur distance between two spaces 

E,F which are isomorphic: d(E,F)=inr(lbTIIIIT-' l l l  where the infimum runs 

over all isomorphisms T : E ~ F. 

We will almost always consider the distance to a Euclidean space d(F, l~mO 
and we will use the abreviated notation 

dE d i m F  = d(F, 12 ). 

We then introduce the following number for a Banach space X and for 

0 < 8 < 1 :  
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dx(8) = sup inf {dr ]F C E, dim F _-> 8 dim E}. 
E C X  
E f . d  

In other words, dx(8) is the smallest constant C such that every f.d. subspace 

E C X contains a subspace F C E with dim F => 6 dim E such that dF ~ C. (Note 

that dx(6) may be infinite.) Our main result is the following theorem. 

THEOREM 1. Let X be a space such that dx (&) < oc for some 8, in 10, l [. Then 

d x ( 8 ) < ~  [or all 6 in ]0,1[. Moreover, we have an estimate of the form 

(1) d×(6)<-_C ' ( l -6 ) - ' lLog(C ' (1 -6 ) - ' ) l  V8 E]O,I[  

for some constant C' (depending only on 6o and dx(&)). For the constant C', we 

will obtain the estimate 

C' _-</3 'dx (6,,)6 o' 

[or some numerical-constant [3'. 

We will then deduce from Theorem 1 

THEOREM 2. The following properties of a Banach space X are equivalent. 

(i) d×(&)<oc for some 8o in ]0,1[. 
(ii) There is a constant A such that vr(E) < A [or all [.d. subspaces E o[ X. 

REMARK. The preceding theorem, together with known facts about spaces 

with a bounded volume ratio, has the following consequence: 

Let X be a space such that d×(80)< ~ for some 80 in ]0,1[. Then every f.d. 

subspace E of X has a basis (el . . . .  ,e , )  such that for any 8 in ]0,1[ and any 

A C {1 . . . . .  n } with [A I --< 8n the vectors {e, l i E A } span a subspace FA satisfying 
d~:, =< C(6),  where C(6)  is a constant depending only on 8. 

For the proof of Theorem 1, we need to introduce some notations: 
For any operator u : l ~ X ,  we define 

where y, denotes the canonical Gaussian measure on R". For any bounded 

operator u:12---~X, we let 

l(u) = sup{ l (uv ) l  v : I j ~  12, n • N, II v II N 1}. 

For more details on this definition, cf. e.g. [4]. We recall that the k-th 

approximation number, denoted by a~(u), of an operator u between Banach 
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spaces is the distance of u to the set of operators of rank less than k. In the proof 

of Theorem 1, we will use the next result. 

THEOREM 3. Under the same assumption as in Theorem 1, there is a constant 

C" such that, for every n and every u : l~--~X, there is a subspace S C l~ of 

codimension less than k such that 

II urs II C " k - " 2 1 ( u )  • 

In other words, we have 

(2) sup k'/2a~(u) <- _ C"l(u).  
k ~ l  

Moreover, we will obtain the following bound for the constant C"<-_- /3dx(8o)8o I for 

some numerical constant [3. 

REMARK. It is well known, cf. [16], that there is a numerical constant B such 

that, for any operator u, 

1r2(u) <= B ~I  k-1'2a~(u). 

Hence, if u is of rank n, 

(3) 7r2(u) -<_ B'Log(n + 1)sup k '/2a~ (u), 
k~-i 

for some numerical constant B'.  

Therefore, it follows from (2) and (3) that, for any n-dimensional subspace 

E C X and any u:12---* E, we have 

~'2(u)<= C"B'Log(n ÷ 1)l(u). 

This means that the Gaussian cotype 2 constant of E is majorized by 

C"B'Log(n + 1). In particular, we recover the known fact (cf. [5]) that any space 

satisfying (*) must be of cotype q for all q > 2. 

Let us recall the following known fact. 

LEMMA 4. Let F be a Banach space and let u : 1~--* F be an operator. Then, for 

any m, there is a subspace S C ! k 2 with dim S > k - m such that 

II ufs [I <- m-"2d, d(u ) . 

PROOF. By an easy inductive argument, there is an orthonormal basis (e~) of 
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l~ such that Ilue, ll_- > a , (u )  Vi  = 1 . . . . .  k. We have then 

(~ai(u)2)l/z<=(~]]ue,[]2) m 

hence 

Therefore,  

<= dFl(u ). 

am(u)<-_ m-~'2dFl(u), 

which is equivalent to the conclusion of Lemma 4. q.e.d. 

PROOF OF THEOREM 3. Consider u : l~--> X. Clearly, by an obvious perturba- 

tion argument, we may assume that ker u = {0}. Let ot = 8o/2 and let E = u(l~). 
It is obviously no loss of generality to assume that a = 1/K for some integer K 

and that n -- K m for some integer m. In this way, we avoid all the irrelevant 

problems of divisibility. By the definition of dx(8o), there is a subspace F C E 

with dim F =  6on and dF =< dx(8o). Applying Lemma 4 to u~,-iF, we find a 

subspace S~ C I] with dim $1 = an such that 

II u~s, I I= dx (80) (~n)- '2  / (u). 

Note that dim Si ~ = (1 - a)n. We then repeat  the above construction with Si ~ in 

the place of l" 2.  

We find S2CS~ with d imS2=  o t ( 1 - a ) n  and 

II ut ll = dx(8o)l(u )ta(1 - a )n  ) -~'2. 

Next, we replace S~ by (S~ ~) $2) ~ and repeat  the construction. After  t steps, we 

find pairwise orthogonal subspaces Sb . . . ,  $, such that Ei"i dim S~ = 

[1 - (1 - a)'ln and 

II II---- dx(8o)l(u)[a(1 - a ) H n l - " z .  

This implies 

II"ls,  II II"g , II 2 

),,, 
<= a-11~dx(8o)l(u)n-II~ 1 - a )-' 

dx (8o)a -'I (u)n -llZ(l -- a )-~,-l~z. 

NOW let k be any integer _-< n. Let k, = codim($1(~...(~S,) = (I - ce)'n. Finally 
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consider the smallest t such that k, < k and let S = S t ~ " ' O S , .  Then 

codim S < k and (since k, , => k)II II =< This completes the 

proof of Theorem 3. 

COROLLARY 5. For a Banach space X, the following properties are equivalent: 
(i) ::18oE]0,1[ such that dx(8,,)< oo. 

(ii) =18 E]0,1[, ::lC<oo such that 

Vn Vu "l~---~X ats,,l(u) = < Cn-ml(u) .  

There is a constant C such that, for all compact operators u : 12--* X, we (iii) 

have 

sup k ~12ak (u ) <= Cl(u ). 
k 

Moreover, these properties imply the following one: 
(iv) There is a constant C such that, for any ]inite sequence (x~ )~=, such that 

(4) V(~ , )  e R" sup l a, I ~ ~ a,x, , 

we have 

(5) 
2 I/2 

PROOF. The proof that (i) f f  (ii) f f  (iii) is implicit in the proof of Theorem 3. 

Let us show that (iii) f f  (i). The proof follows by a well-known argument. Given 

an n-dimensional subspace E C X, we know that there is an isomorphism 

u : 1;---~ E such that 11 u II < 1 and ~r2(u-') < XTn. It follows that for any S C l~ of 

dimension > n - k we have 

V~n - k = ¢r2(Ids) =< II Urs II 7r2(u-') <= Wnn o U,s O 

hence Iluls I > (1 - k /n )  ''2 so that a, (u) => (1 - k /n )  ~'2. Taking k = [n/2], we 

deduce from (ii i)that l(u)>= C-'[n/211'~2 -~'2. Then (recalling that II u H =< 1), we 

deduce immediately from the results of [5] that there is a subspace F C E with 

dim F => 8on and dF < 2 where 8o =/3 • C -2 for some numerical constant/3. This 

proves that (iii) ~ (i). Finally, let us show that (iii) ~ (iv). Consider (xi)~a. in X 

satisfying (4). Let E be the span of (xi)~.. Consider u :l~--*E defined by 

u (a)  = E? a~x~ Va E R". Then, clearly u -~ satisfies Ir2(u-~) =< V~n (indeed u -~ = iv 

where v :E--*  l:  satisfies II v II =< 1 by (4) and i : l~--~ 1~ is the identity map). 
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Now, if we assume (iii), ::IS C l~ such that 

d imS = [n/2] and IluPsll= < C(2n-')'z21tu). 

Hence, we have 

145 

COROLLARY 6. Let 1 <= p < 2. A Banach space X is o[ cotype 2 iff there is a 6 
in ]0,1[ such that dL,~x)(6) < oo. 

PROOF. It is well known and easy to prove that X is of cotype 2 ifI Lp (X) is of 

cotype 2. Moreover,  by [5] every cotype 2 space possesses the property (*). 

Therefore, the "only if" part is already known. Let us prove the "if" part. 
Assume that Lp (X) satisfies the property (i) in Corollary 5. Then it must satisfy 

(iv) in the same statement. Let us denote by (r.) the Rademacher  functions. 

Let us consider the subspace of Lp (X) formed by all the functions of the form 

Y.7 r~x, (n E N, x~ E X). We denote by Rad(X)  the closure of this space in Lp(X). 
Note that if IIx, II --> 1 for i = 1 . . . . .  n, we have 

sup la, I ~ Z ot,r,x, L.,,,," 

Hence, by the property (iv), 

2 1/2 

(flJSr, o,x, _-< C d),. (a 
Lz(X) 

[n/2] = dim S = tr(a-'uPs) 

=< lr2(u-')~r2(uPs ) 

. II uPs II 

<= Cn ~/22~/2l (u). 

Finally, we have l(u)>= (4C)-1n ~/2 (at least for n large enough), which establishes 

that (iii) ~ (iv). 

REMARK. Using the results of [20], it is easy to give the following application 

of the preceding corollary: Let S be a K-convex subspace of a Banach space X, 

then, if X possesses the property (*) above, the same is true for the quotient 

x / s .  
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By symmetry and homogeneity, this leads to 

C-nninfllx, II--- C a,x, d~,. (~) 

It is known that this last inequality implies that X is of cotype 2 (cf. e.g. the 

argument included in the paper [6] p. 2). q.e.d. 

REMARK. Note that we only need that Rad(X) satisfies (*) to conclude that X 

is of cotype 2. 

We now come to the proof of Theorem 1. We will use the following result. 

PROPOSITION 7. There is a [unction f : ]O, l [--* R+ with the [ollowing property : 

Let  X be a Banach space, let v : X---~ l~ be an operator, then, for each e in ]0,1[, 

there is a subspace S C X such that codim S < en and 

II v~ II =< 'l'(e)n-"=l(v*). 
Moreover, ~b(e ) tends to infinity as O ( e - ' )  when e---~O. 

This result was proved in [12] in an essentially equivalent formulation. It is 

enough for our purposes in the sequel. However, to obtain better estimates, it is 

worthwhile to note that in [15] an essentially sharp improvement is obtained on 

the order of growth of the function ~, namely ~b(e) is O (e-"2) when e ~ 0. The 

latter result can then be reformulated as follows: there is a constant C such that, 

for all operators u : l ~ - ~ X  and for all k, there is a subspace S C X*  of 

codimension less than k such that [lu*l, II Ck-"21(u). This corresponds to an 

estimate similar to the one in Theorem 3 but with the so-called Kolmogorov 

numbers of u (see e.g. [16]), instead of the approximation numbers of u. 

In the appendix at the end of this paper we include a proof of a slight 

refinement of Proposition 7. 
We now turn to the proof of Theorem 1. Let E be a Banach space. Then for 

any operator v :E- -~  l~, we define the dual norm to l 

l*(v ) = sup{tr(vu)] u : l~---~ E, l(u ) < 1}. 

We need to recall two facts. 

FACT 1. For any n-dimensional space E, there is an isomorphism u : l~'--* E 

such that l (u)  = l*(u -~) = X/nn. 

This is a result due to Lewis [8], applied to the / -norm,  as done previously in 

141. 
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FACT 2. There is an absolute constant K such that, for all u : l~--~ E, we have 

l(u) <- l*(u*)KLog(1 + dE). 

This follows from the fact that the K-convexity constant (using here Gaussian 

variables instead of the Rademacher functions) is majorized by KLog(1 + de) 

for some absolute constant K. For a proof of the latter, we refer the reacher to 

[18] or [14]. Once this has been clarified, Fact 2 is merely a reformulation of the 

fact that the orthogonai projection onto the span of independent Gaussian 

random variables has norm less than KLog(1 + dE) on the space L2(E); see [4] 

for more details. 

PROOF OF THEOREM 1. Let X be such that dx(30)<oo. We will use the 

property obtained in Theorem 3. Let 3 be any number in ]0,1[ and let e = 1 - 3. 

Let E be any n-dimensional subspace of X. 

Using Fact 1 above, we find an isomorphism u:l~--~E such that / ( u ) =  

l*(u-') = X/nn. By Theorem 3, there is a subspace H C l~ such that codim H <-_- ½en 
such that 

(6) II Hi, II < C"(2/e )"2n-"21(u). 

We will denote by I I the Euclidean norm on l~. We now introduce a number 

p > 0 (to be specified later) and we equip the space E with a new norm defined 

simply by 

V x e E  Ilxllo=llxll+plu-'xl. 

Let E, = u(H)CE.  By (6), we have 

(7) Vx olu-'xl<=llxllo 

Let us denote by E~ ° the space E, equipped with the norm It II0- By (7), we have 

dE~ <= 1 + C"(2/e )~2p ' 

Let us denote by j:E~--~E, the inclusion map (i.e. the identity operator). 

Obviously, IlJll_- < 1, hence by the ideal property 

By Fact 2, it follows that 

l*(u-'j)<-_ l*(u-')= V-n. 

l((u-'j)*) <- Ap~nn 

with Ao = K Log(2 + C"(2/e)'/2p-'). 
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We now apply Proposition 7 to the operator  v u-lj:E~---~l" = 2. This implies 

that there is a subspace S C E~ with codim S = ~ en such that 

II u - %  II <= ~b(e /e)A, .  

This means that 

V x E S  

hence 

(q,(½ e)A.)-'l u-'x [<= Ilx II + p[u-'x t 

(t0 (½e)A,)-I{1 - pAo~b(½e )} l u - l x  I <= II x II. 

We now observe that (6 and hence e = 1 - 6 remaining, fixed) we have pA ,  --* 0 
when p ~ 0. Therefore,  we can choose p = F (6 )  (a function of 6 only) such that 

(8) 

We have then 

(9) 

pA.~O (e /2) = ½. 

v ,  E s  plu-'xt ll,lt. 

In the other direction, since S C E~, we have by (6) 

(10) V x E S  IlxU<=C"(2/e)'/21u-'x I. 

Finally, let us consider S as a subspace of E and let us denote by S C E  the 

corresponding normed space. By (9) and (10), we have 

(11) d~ <= p- lC"(Z/e  )l'2. 

Moreover  dim S = dim S _-> dim El - ½ en, hence 

dim S >-.n - en = 6n. 

Let us now come back to the function p = F(6)  determined implicitly by (8). 

We have 

pJ/(e /2)K log(2 + C"(2/e ),/2p-,) = ½. 

Let p = t (e /2)  '/2. Using the fact [15] that (½e)~/2qJ(½e)remains bounded when 

e---)0, we find that t = (2 /e ) '2F(3)  satisfies for some constant C~ 

tC, Log(2 + 2C"/e t )  =2 > ~- 

and this implies, for some numerical constant (?2 > 0, 

t >= C~/ILog(C"/e)l when e ~ 0 .  
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Finally, substituting in (11), we obtain 

< C3C" ] C" 
dx = (1 - 6) L°gTz-~  

for some numerical constant C3, when 8--> 1. 

Equivalently, d×(6) < C 3 C " ( 1 - 8 ) - ' I L o g C " ( 1 - 8 ) - '  [, which completes the 

proof of Theorem 1. 

In the sequel, we will need to recall the notations in use for the so-called 

entropy numbers and Gelfand numbers of a compact operator u :X---> Y 

between Banach spaces (cf. e.g. [16]). 

For any compact subset K C Y, we denote by N(K, e) the smallest number of 

open balls of radius e which cover K. 

We then define 

ek(u) = inf{e > OIN(u(B×),e)<= 2k}. 

Moreover, we define 

c~ (u) = inf{ll u~ HI F c E, codim F < k }. 

Note that we have obviously 

c (u ) <<- ak(u ). 

We now pass to the proof of Theorem 2. We will first establish the following 

result. 

THEOREM 8. Let E be an n-dimensional space. Assume that there is a constant 

C and a > 0 such that, for all k <= n, there is a subspace F C E of codimension less 

than k such that 

dv <= C(n /k  )'. 

Let v'E--+ I~ be an operator. We have then 

(12) e,(v) < ,-, lr2(v) 
= c p ~  V~n 

where p, is a constant depending only on or. 

Consequently, 

{ vol(v (Be))'~ ''" < 2Caa~r2(v)n-"5 
(I3) \ V. ] = 

where V, denotes the volume of the n-dimensional Euclidean ball. 
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To prove Theorem 8 we will use the following lemma due to Carl [2]. We 

sketch the proof for the convenience of the reader. 

LEMMA 9. For each a > O, there is a constant A~ such that every operator 

v : E ~ F between Banach spaces satisfies : 

(14) Vn sup k~ek(v) < A~ sup k~c~(v). 
k ~ n  k~-n 

P~oor.  Note that we may embed F into an L~ space (isometrically) without 

changing the left-hand side of (14). Now, if F = L~ then ck(v)= ak(v) (by the 

extension property of L~) so that it is enough to prove (14) with a~(v) in the 

place of ck(v). 

a < ~ 2 N. Let us assume that supk<_, k a ~ ( v ) = l , a n d t h a t n  Then for every m < N, 

there is an operator  vm such that 

rank(v,  ) < 2" 

Let vo = 0. Then 

and IIv- v . l l ~ 2  -'~ 

N 

v = ~1  (vm - v,.=,)+ v - vN. 

Let Am = vm - v,~_~. We have 

(15) r a n k ( A " ) < 2  "÷' and IIAmll<--2-"-"°'2. 

Let K = v (B~), let K,. = Am (B~), and let em> 0, to be specified later. Since the 

dimension of K,. is majorized by (15), we find, using a classical estimate (cf. e.g. 

[51 p. 58), 

Ve >0 N(gm, e IIA. II)_--< (1+ 2e-') 2"+'. 

Observe that for 0 <  r < 1, we have 

V e > 0  V d E N  ( l+2/e)a<exp(2 /e )rdr  -'. 

Y~.., K. + (v vN)(B~), Hence,  since K C ~ 

(2 )n N K, e,~Ua.U+2 -'° --<~,.,N(K~,,e. Ua. II) 

N 

-< exp ~ 2m÷lr-~(2e~,l) '. 
~,1=1 

Now, consider a number /3  > a and r such that 0 < r < 1 and r < 1//3. Let A be 

any positive number. We take e,, = A 2 -02 -Na. 
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By elementary computations, we find constants p' and p" depending only on 

a, fl and r such that 

N(K, Ap'2 -Na ) =< exp A -'p"2 N. 

Choosing A - ' =  (p")- 'Log2, we finally obtain 

e . (v )< A~n -~ 

for some constant A~ depending only on a (we take for instance fl = 2a and 
r = (2a + 1)-I). 

Note that we also obtain an estimate of the form 

et~. i(v) ---- ;l~8-'/'n-~ 

for 0 < ~ < 1. 

By homogeneity, we have proved that 

Vn=>l 

which is equivalent to (14). 

n~e,(v)<= A~ sup kack(v) 
k<=n 

PROOF OF THEOREM 8. We first recall that if w is an operator between two 

Hilbert spaces, then *r2(w) coincides with the Hilbert-Schmidt norm of w, or 
equivalently 

• r 2 ( w ) = ( ~ a k ( w ) 2 )  1'2 (cf. e.g. [16]). 

It follows that for any w:F--> l~ we have 

(16) ( ~, a~(w)2) ln<<- dF,r2(w). 

Now consider v : E - ~  l; as in Theorem 8. Let F C E be a subspace such that 

codim F < k and d~ <= C(n/k)% Then, by (16) we have 

k 'n ak (VIF ) <---- dFIr2(vlF) ----< arrt2(v ). 

Therefore, there is a subspace F1 C F such that dim F - dim F~ < k for  which 

[] vIF, ]J--< dFk-m'n'2(v). 

This implies 

c2k ( v ) < d,~k-'%r 2t v " 
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Therefore 

By Lemma 9 

sup k'+tl%k ( v ) <- C2"+"Z n"wz( v ). 
k e n  

e.(v)_- < 2t.÷~,~C2*+'%-~%r~(v). 

This concludes the proof of Theorem 8 since the last assertion is immediate: by 

the definition of e. (v) we have vol(v (B~)) _-< 2 n V.e. (v)", so that (13) follows from 

(12). 

REMARK. In the particular case when X is of cotype 2 the preceding proof 

simplifies a great deal. Let us streamline the argument. We consider E C X and 

u:l'~-.>E such that Ilu II -< 1 and ¢r2(u-')_- < V~n. Let us denote by C2(E) the 
(Gaussian) cotype 2 constant of E. We use first an argument similar to the one 

for Theorem 1; we introduce the norm Uxll~=llxll+pllu-'xll, we let E =  

(E, II I1 ), and we observe that 

l((u-':E~ --->/~)*) < K Log(2 + 1/p) C2(E)n ~,z 

for some numerical constant K. Therefore, by Proposition 7 with the improve- 

ment of [15], there is a subspace S C E~ with codim S < k such that 

II u- ' :  s / ll =< K'(n/k )mLog( 1 + 1/p )C2(E). 

Then, proceeding as in the proof of Theorem 1, we find 

c~ (u -I) <= K"(n/k )lt2C2(E)Log[G(E)(n/k ) ~'2 + 1] 

hence by Lemma 9 

and afortiori 

<- K"C2(E)[Log(C2(E)+ 1)](n/k ) 

e. (u-') < K4G(E)Log(C2(E) + 1) 

vr(E) _<- 2K4C2(E)Log(G(E) + 1) 

for some numerical constant K4. 

It is conceivable that an estimate such as 

vr(E) _-< constant. C2(E)(Log C2(E) + 1) ~ 

holds. Note that (because we are using the Gaussian cotype 2 constant) 
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C 2 ( l ~ ) ~ ( n / L o g n )  ~I2 and vr(/~)>CXTn 

so that such an estimate would be optimal. 

REMARK. In the preceding remark, we proved in passing that for any 8 in 

]0,1[ there is a subspace S C E with dim S _-> 8n and 

ds <= KsCz(E)(1 - 6 )-'ZZLog[C2(E)(1 - 8)-"2 + 1] 

(take k ~ ( 1 -  6)n in the preceding reasoning). 

Similar estimates (with a worse dependence of 6) appeared already in [3] and 
[12]. The above estimate was obtained recently in [15], but our argument has the 

advantage of avoiding the iteration technique used in all these papers. 

It is clear from the proof of Theorem 8 that ~'2(v) can be replaced REMARK. 

by 

Sup k l/2 Sup ak(vw). 

The latter quantity appears in the paper of Pietsh on the so-called Weyl 

numbers; cf. [17]. 

PROOF OF THEOREM 2. The implication (i) ~ (ii) in Theorem 2 is now an easy 

corollary of Theorem 1 and Theorem 8. The implication ( i i )~  (i) is already 
known; cf. [23]. 

It is also possible to adapt the argument of [1] to show that Theorem 1 implies 

Theorem 2. However, our proof using Theorem 8 seems simpler and gives more 
flexibility for the choice of the ellipsoid. 

In the last part of this paper, we study the duals of the Banach spaces 

considered in Theorem 1 assuming moreover that they are K-convex, or 
equivalently (cf. [19]) that they do not contain /~"s uniformly. We recall that a 
Banach space X is called K-convex if the orthogonal projection onto the closed 
span of the Rademacher functions in L2([0,1]) defines a bounded operator on 
L2([O,1];X). 

THEOREM 10. The following assertions are equivalent for a space X. 

(i) X is K-convex and there is a 80 in ]0,1[ such that dx.(8o)< oo. 
(ii) For all 8 in ]0, l[, there is a constant C8 such that, for any subspace S C X 

and any operator u • S -~ l~, there is an orthogonal projection P : l~-~ l~ with rank 

P >= 8n and an operator i : X--* l~ such that Ells = Pu and II i II--< c, II u II. 
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(iii) For some 6 in ]0,1[, the same as (ii) holds. 

x~ . . .~ .  
U " 

S u , I "  t ' "~ l .  

PROOF. (i) ~ (ii), We will use the following fact: 

If a space Y is K-convex there is a constant A with the following property: for 

any subspace M C Y, let o': Y ~  Y / M  be the quotient map, for any 

v ' l~ - -~  Y / M ,  there is a "lifting" 13 : l~---~ Y such that o-z3 = v and lU3)_ -< Al(v). 

This follows rather easily from the definition of K-convexity. In fact, the 
preceding property even holds for Y arbitrary assuming only that M is 

K-convex; the constant A will then depend on M. See [20] for details. 
n . . . .~ ~ ± Now assume (i) and consider u as in (ii). Consider u*'12 X / S  . 

Obviously we have l (u*)-< ~nnll u*ll = xfnnll u II. By the preceding property, 
there is an operator (u*) : 17~  X* such that (denoting by or : X *  ~ X * / S  1 the 

quotient map) we have 

~(u*)  = u* and 

(17) 

l ( a* )  <= ;tl(u *) 

~ ~n l lu  11. 

hence we find 

a~ (~*) ~= Cx (n/k )"211u II. 

Equivalently, there is an orthogonal projection P" l~---> l~' with rank P > n - k 

such that 

08) II¢~)P II--< cA (,,/k)"2ll u II. 

Let then w = (u~) * : X ~ 17. 

We have clearly by (17) 

Wls = u, hence PWls = Pu  

and by (18), IIPw II--< CX(n/k)"211 u II. 
This implies (ii). (Note that we find Ct E O((1 - 8)-"2)). 

(ii) ~ (iii) is trivial. 

Let us prove that (iii) ~ (i). Assume (iii). 

By Theorem 3, there is a constant C'such that 

Sup k '/2ak (u ~ )  =< Cl(u  *) 
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Note that, by Dvoretzky's theorem (see [5]), (iii) implies that X contains 

uniformly complemented/7 's  and even that X is locally zr-euclidean. Hence, by 

[19] corollary 2.11, X must be K-convex. We now prove that (iii) implies that X* 
possesses the second property in Corollary 5. Consider an operator u :lT---~X*. 

Let 6 be as in (iii). 

By Proposition 7, there is a subspace S C X  with codim S < an~2 such that (for 
some constant C) 

II II-<- c t ( u ) n - " z  

By (iii), there is a projection P : l T ~ 1 7  with r a n k P >  6n and an operator 

v : X * ~  l~ such that vls = Pu*ps and II v II--< c'll u*,s II eor some constant C'. 
Returning to u we find 

( Pu * - v )l.~ = 0 

hence r a n k ( P u * -  v ) <  6n/2.  

Finally, if T = u* - v 

rank(T) < rank(Pu * - v) + rank(1 - P) < (1 - 6/2)n, 

and Ilu - T*II = ltvll -< - C'Ct(u)n ,2 so that 

ak(u)  <- _ C ' C l ( u ) n - " ' -  with k = [(1 - { .6 )n] .  

This shows by Corollary 5 that X* satisfies (i) and this concludes the proof of 

Theorem 10. 

REMARK 1 1. In [9], Maurey proved that any space X of type 2 possesses the 

following property: 

[" There is a constant C such that for any subspace S C X and for 

( + )  /)any n, any operator u:S--*12'" admits an extension f i ' X - - * 1 7  

L such that II a II--< f i r  u II. 

It is not known whether, conversely, the property ( + ) implies that X is of type 2. 

However,  the preceding result gives some information in that direction. Indeed, 

by [19] a space X is of type 2 itt X is K-convex and X* is of cotype 2. The 

preceding theorem says that property (iii) [which is a weak form of ( + )  above] 
holds iff X is K-convex and X* satisfies a weak form of cotype 2 as described in 

Corollary 5. By the remark after Theorem 3, we find that if X satisfies the 

properties in Theorem 10 (in particular if X satisfies ( + )) then there is a constant 

B" such that the type 2 constant of any n-dimensional subspace of X is 

majorized by B " L o g ( n  + 1). Moreover, we have 



156 v.D. MILMAN AND G. PISIER Isr. J. Math. 

COROLLARY 12. Let X be a Banach space. Let 2<= q < oo. Then X is of type 2 

iff the space Lq ([0,1]; X )  possesses the property (+) .  

PROOF. If X is of type 2, so is Lq(X),  hence Lq(X)  satisfies ( + )  by Maurey's 

theorem [9]. Conversely, if Lq(X)  satisfies ( + ) then by Theorem 10 (and an easy 

"localization" argument), if 1/p+ 1/q = 1, Lp(X*)  satisfies property (i) in 

Theorem 10. By Corollary 6, this implies that X* is of cotype 2. Since by 

property ( + ) X cannot contain l~"s uniformly, it must be K-convex and hence of 

type 2, by [19]. 
Note that in Corollary 12 again it is enough to assume that Rad(X)  possesses 

( + )  to conclude that X is of type 2. 

Appendix 

We will give below a different proof of Proposition 7 with a slight refinement. 

Let v :X~l_ ,"  be an operator; we define 

S(v) = sup V-kek (v). 
k->l  

Note that this quantity is equivalent to sup,>,, e(Log N(v(Bx),e))'~2. 

By a well-known result in the theory of Gaussian processes, we have 

S(v)<= t~,l(v *) 

for some absolute constant /~t. 
This result is due to Sudakov [21] and follows from a classical lemma of 

Slepian. This shows that the next statement improves Proposition 7. 

PROPOSITION 7'. Let v : X - o  I7 be as above. Then, for each e in ]0, 1[, there is a 

subspace S C X with codim S < en such that 

(19) II V,s I < t z2e- 'n-"2S(v)  

for some absolute constant 1~2. 

The proof is based on the following. 

LEMMA. There are numerical constants a > O, b > 0 satisfying the following. 

Let {y,} be a subset of 1~ with at most 2 ak elements, k <= n. Then there is an 

orthogonal projection P on l~ with rank k -  1 such that 

(20) Ilpy, ll>= b(k/n)"2lly, II for all i. 
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PROOF. This result is proved (but not stated) in [7] using the fact that the 

average of IIPy, II over all projections P of rank ( k - l ) i s  equivalent to 

(k/n)"211y, fl and moreover that the deviation of IIPy, II from this average is 

bounded by a suitable exponential estimate. 

PROOF OF PROPOSmON 7'. Assume that S ( v ) <  1. Let 1 =< k < n, m = [ak] and 

N = 2 '~. By definition of S ( v )  this implies that there are N points (xi)~_~N in Bx 

such that Vx E B× ::li-<_ N such that I l v x -  vx, I1< m -''2. Let y, = vx,. By the 

preceding lemma, there is a projection P of rank k - 1 such that (20) holds. Let 

S = Ker Pv. Note that codim S =< k - 1 < k. Moreover, if x is in S A B×, for some 

i <_- N we have  II v x  - v x ,  II < m-'/2. Hence 

Hence by (20) 

II ~x II < m -''2 + II ~x, II. 

< m ,,2 + b-,(n/k),,211Pvx, II 

= m - m +  b - ' ( n / k ) " 2 l l P v ( x  - x,)tl 

<= m ,/2+ b ' ( n / k  ) m" rn -'/2 

so that finally 

I1 vp, II <= b ' ( n / k ) ,  n ,/2 for some numerical constant b'. 

In other words, we have proved (by homogeneity) 

Sup kck(v)<= b 'n ' /2supX/-kek(v) ,  

and this clearly is equivalent to (19). q.e .d .  
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