BANACH SPACES WITH A WEAK COTYPE 2 PROPERTY

BY

VITALI D. MILMAN[®] AND GILLES PISIER[®] *"I.H.E.S., Paris VI, and Tel Aviv University, Ramat Aviv, Israel; and* ^{*"I.H.E.S. and Equipe d'Analyse, Université Paris VI, 4, Place Jussieu, 75230 -- Paris Cedex 05,*} *France*

ABSTRACT

We study the Banach spaces X with the following property: there is a number δ in $]0,1[$ such that for some constant C, any finite dimensional subspace $E \subset X$ contains a subspace $F \subseteq E$ with dim $F \geq \delta$ dim E which is C-isomorphic to a Euclidean space. We show that if this holds for some δ in $]0,1[$ then it also holds for all δ in $]0,1[$ and we estimate the function $C = C(\delta)$. We show that this property holds iff the "volume ratio" of the finite dimensional subspaces of X are uniformly bounded. We also show that (although X can have this property without being of cotype 2) $L_2(X)$ possesses this property iff X if of cotype 2. In the last part of the paper, we study the K -convex spaces which have a dual with the above property and we relate it to a certain extension property.

In [5], it is proved that every Banach space X of cotype 2 enjoys the following property:

For each $\epsilon > 0$, there is a number $\delta_0 = \delta_0(\epsilon) > 0$ such that, every finite dimensional subspace $E \subset X$ contains a subspace (*) $F \subset E$ of dimension dim $F \ge \delta_0 \dim E$ which is

 $(1 + \varepsilon)$ -isomorphic to a Euclidean space.

Conversely, this property implies that X is of cotype q for every $q > 2$. However, the paper [5] also includes an example due to W. B. Johnson showing that the preceding property $(*)$ does *not* imply that X is of cotype 2.

In the present note, we will investigate the above property (*) in more detail. We will give an equivalent formulation which resembles the notion of "cotype 2", from which it will follow easily that, if $p \le 2$, $L_p(X)$ has the above property iff X is of cotype 2.

Received April 26, 1985

Furthermore, we will be concerned by the following related question:

Consider a space X with the above property (*) and fix a number δ in [0,1] (with $\delta > \delta_0$). Is it true that every finite dimensional $E \subset X$ contains a subspace $F \subset E$ of dimension dim $F \geq \delta$ dim E which is C_{δ} -isomorphic to a Euclidean space, where C_6 is a number depending on δ only?

We will answer this question affirmatively (giving an estimate of C_6 when $\delta \rightarrow 1$) and we will also show that the above property (*) is equivalent to the following:

Finere is a constant A such that every finite dimensional subspace $E \subset X$ (**) \downarrow satisfies $vr(E) \leq A$, where $vr(E)$ denotes the "volume ratio" in the sense of [23], which is defined below.

For a finite dimensional (in short f.d.) space E, let us denote by B_E the unit ball of E and let ξ_E be the maximal volume ellipsoid included in B_E ; then the "volume ratio" of E is defined as

$$
\text{vr}(E) = \left(\frac{\text{vol}(B_E)}{\text{vol}(\xi_E)}\right)^{1/n}, \qquad \text{dim } E = n.
$$

The proof of the implication $(*) \Rightarrow$ $(**)$ is closely related to the recent paper [1]. There, it is proved that every cotype 2 space possesses the preceding property (**). Our proof is different from the one in [1], and yields a somewhat stronger statement even in the case when E is of cotype 2.

Recall that by the results of [10] (or [5]), if a f.d. space E is C -isomorphic to a Euclidean space, then it contains for each $\varepsilon > 0$ a subspace $F \subset E$ which is $(1 + \varepsilon)$ -isomorphic to a Euclidean space and of dimension dim $F \geq \delta''$ dim E where $\delta'' > 0$ is a number depending only on C and $\epsilon > 0$. Therefore, in the above property (*) we may as well take ε fixed (say $\varepsilon = 1$). In the sequel, we will denote by P_s the orthogonal projection onto a subspace S of a Hilbert space.

Let us recall the definition of the Banach-Mazur distance between two spaces *E,F* which are isomorphic: $d(E, F) = inf\{\|T\| \|T^{-1}\| \}$ where the infimum runs over all isomorphisms $T: E \rightarrow F$.

We will almost always consider the distance to a Euclidean space $d(F, l_2^{\text{dim}F})$ and we will use the abreviated notation

$$
d_F = d(F, l_2^{\dim F}).
$$

We then introduce the following number for a Banach space X and for $0 < \delta < 1$:

$$
d_{X}(\delta) = \sup_{\substack{E \subset X \\ E \subset \delta \\ E}} \inf \{ d_{F} \mid F \subset E, \dim F \geq \delta \dim E \}.
$$

In other words, $d_x(\delta)$ is the smallest constant C such that every f.d. subspace $E \subset X$ contains a subspace $F \subset E$ with dim $F \ge \delta$ dim E such that $d_F \le C$. (Note that $d_x(\delta)$ may be infinite.) Our main result is the following theorem.

THEOREM 1. Let X be a space such that $d_x(\delta_0) < \infty$ for some δ_0 in [0, 1]. Then $d_{x}(\delta)$ $\lt \infty$ for all δ in [0,1]. Moreover, we have an estimate of the form

(1)
$$
d_X(\delta) \leq C'(1-\delta)^{-1} |\text{Log}(C'(1-\delta)^{-1})| \quad \forall \delta \in]0,1[
$$

for some constant C' (depending only on δ_0 *and* $d_x(\delta_0)$ *). For the constant C', we will obtain the estimate*

$$
C' \leq \beta' d_X(\delta_0) \delta_0^{-1}
$$

for some numerical-constant β' *.*

We will then deduce from Theorem 1

THEOREM 2. *The following properties of a Banach space X are equivalent.*

- (i) $d_X(\delta_0) < \infty$ for some δ_0 in [0,1].
- (ii) *There is a constant A such that* $vr(E) \leq A$ *for all f.d. subspaces E of X.*

REMARK. The preceding theorem, together with known facts about spaces with a bounded volume ratio, has the following consequence:

Let X be a space such that $d_x(\delta_0) < \infty$ for some δ_0 in [0,1]. Then every f.d. subspace E of X has a basis (e_1, \ldots, e_n) such that for any δ in $[0,1]$ and any $A \subset \{1, ..., n\}$ with $|A| \leq \delta n$ the vectors $\{e_i | i \in A\}$ span a subspace F_A satisfying $d_{F_A} \leq C(\delta)$, where $C(\delta)$ is a constant depending only on δ .

For the proof of Theorem 1, we need to introduce some notations: For any operator $u: l_2^n \rightarrow X$, we define

$$
l(u) = \left(\int \|u(\alpha)\|^2 d\gamma_n(\alpha)\right)^{1/2}
$$

where γ_n denotes the canonical Gaussian measure on \mathbb{R}^n . For any bounded operator $u: l_2 \rightarrow X$, we let

$$
l(u) = \sup\{l(uv) | v : l_2^n \to l_2, n \in \mathbb{N}, ||v|| \leq 1\}.
$$

For more details on this definition, cf. e.g. $[4]$. We recall that the k -th approximation number, denoted by $a_k(u)$, of an operator u between Banach

spaces is the distance of u to the set of operators of rank less than k . In the proof of Theorem 1, we will use the next result.

THEOREM 3. *Under the same assumption as in Theorem* 1, *there is a constant* C'' such that, for every n and every $u : l_2^n \to X$, there is a subspace $S \subset l_2^n$ of *codimension less than k such that*

$$
||u_{|s}|| \leq C''k^{-1/2}l(u).
$$

In other words, we have

$$
\sup_{k\geq 1}k^{1/2}a_k(u)\leq C''l(u).
$$

Moreover, we will obtain the following bound for the constant $C'' \leq \beta d_X(\delta_0)\delta_0^{-1}$ *for* some numerical constant **B**.

REMARK. It is well known, cf. $[16]$, that there is a numerical constant B such that, for any operator u ,

$$
\pi_2(u)\leq B\sum_{k\geq 1}k^{-1/2}a_k(u).
$$

Hence, if u is of rank n ,

(3)
$$
\pi_2(u) \leq B' \text{Log}(n+1) \sup_{k \geq 1} k^{1/2} a_k(u),
$$

for some numerical constant B'.

Therefore, it follows from (2) and (3) that, for any n -dimensional subspace $E \subset X$ and any $u: l_2 \rightarrow E$, we have

$$
\pi_2(u) \leq C''B' \text{Log}(n+1)l(u).
$$

This means that the Gaussian cotype 2 constant of E is majorized by $C''B'Log(n + 1)$. In particular, we recover the known fact (cf. [5]) that any space satisfying (*) must be of cotype q for all $q > 2$.

Let us recall the following known fact.

LEMMA 4. *Let F be a Banach space and let u* : $l_2^k \rightarrow F$ *be an operator. Then, for any m, there is a subspace* $S \subset l_2^k$ *with* $\dim S > k - m$ *such that*

$$
||u_{|S}|| \leq m^{-1/2} d_F l(u).
$$

PROOF. By an easy inductive argument, there is an orthonormal basis (e_i) of

 l_2^k such that $\|ue_i\| \ge a_i(u)$ $\forall i = 1, ..., k$. We have then

$$
\left(\sum a_i(u)^2\right)^{1/2}\leq \left(\sum\|ue_i\|^2\right)^{1/2}
$$

hence

$$
\leq d_F l(u).
$$

Therefore,

$$
a_m(u)\leqq m^{-1/2}d_Fl(u),
$$

which is equivalent to the conclusion of Lemma 4. $q.e.d.$

PROOF OF THEOREM 3. Consider $u: l_2 \rightarrow X$. Clearly, by an obvious perturbation argument, we may assume that ker $u = \{0\}$. Let $\alpha = \delta_0/2$ and let $E = u(l_2^n)$. It is obviously no loss of generality to assume that $\alpha = 1/K$ for some integer K and that $n = K^m$ for some integer m. In this way, we avoid all the irrelevant problems of divisibility. By the definition of $d_x(\delta_0)$, there is a subspace $F \subseteq E$ with dim $F = \delta_0 n$ and $d_F \leq d_X(\delta_0)$. Applying Lemma 4 to $u_{1u^{-1}F}$, we find a subspace $S_1 \subset l_2^n$ with dim $S_1 = \alpha n$ such that

$$
\|u_{|S_1}\|\leq d_X(\delta_0)(\alpha n)^{-1/2}l(u).
$$

Note that dim $S_1^{\perp} = (1 - \alpha)n$. We then repeat the above construction with S_1^{\perp} in the place of l_2^n .

We find $S_2 \subset S_1^{\perp}$ with dim $S_2 = \alpha(1-\alpha)n$ and

$$
||u_{|S_2}|| \leq d_X(\delta_0)l(u)(\alpha(1-\alpha)n)^{-1/2}.
$$

Next, we replace S_1^+ by $(S_1 \oplus S_2)^+$ and repeat the construction. After t steps, we find pairwise orthogonal subspaces S_1, \ldots, S_t such that $\sum_{i=1}^{i=t} \dim S_i =$ $[1 - (1 - \alpha)']$ *n* and

$$
||u_{|S_1}|| \leq d_X(\delta_0)l(u)[\alpha(1-\alpha)^{i-1}n]^{-1/2}.
$$

This implies

$$
\|u_{|S_1\oplus\cdots\oplus S_r}\| \leq \left(\sum_{i=1}^r \|u_{|S_i}\|^2\right)^{1/2}
$$

\n
$$
\leq \alpha^{-1/2} d_X(\delta_0) l(u) n^{-1/2} \left(\sum_{i=1}^{r-1} (1-\alpha)^{-i}\right)^{1/2}
$$

\n
$$
\leq d_X(\delta_0) \alpha^{-1} l(u) n^{-1/2} (1-\alpha)^{-(r-1)/2}.
$$

Now let k be any integer $\leq n$. Let $k_i = \text{codim}(S_1 \oplus \cdots \oplus S_n) = (1 - \alpha)^t n$. Finally

consider the smallest t such that $k_i < k$ and let $S = S_i \oplus \cdots \oplus S_i$. Then codim $S \le k$ and (since $k_{i-1} \ge k$) $||u_{1s}|| \le d_x(\delta_0) \alpha^{-1} l(u) k^{-1/2}$. This completes the proof of Theorem 3.

COROLLARY 5. *For a Banach space X, the following properties are equivalent:* (i) $\exists \delta_0 \in [0,1]$ *such that* $d_X(\delta_0) < \infty$.

(ii) $\exists \delta \in [0,1[$, $\exists C < \infty$ *such that*

$$
\forall n \; \forall u: l_2^n \to X \qquad a_{\lbrack \delta n \rbrack}(u) \leq C n^{-1/2} l(u).
$$

(iii) *There is a constant C such that, for all compact operators* $u : l_2 \rightarrow X$ *, we have*

$$
\sup_{k} k^{1/2} a_{k}(u) \leq C l(u).
$$

Moreover, these properties imply the following one:

(iv) *There is a constant C such that, for any finite sequence* $(x_i)_{i \leq n}$ such that

(4)
$$
\forall (\alpha_i) \in \mathbb{R}^n \qquad \sup |\alpha_i| \leq \left\| \sum \alpha_i x_i \right\|,
$$

we have

(5)
$$
\sqrt{n} \leq C \Big(\int_{\mathbb{R}^n} \left\| \sum_{i=1}^n \alpha_i x_i \right\|^2 \gamma_n(d\alpha) \Big)^{1/2}.
$$

PROOF. The proof that (i) \Rightarrow (ii) \Rightarrow (iii) is implicit in the proof of Theorem 3. Let us show that (iii) \Rightarrow (i). The proof follows by a well-known argument. Given an *n*-dimensional subspace $E \subset X$, we know that there is an isomorphism $u: l_2^n \to E$ such that $||u|| \leq 1$ and $\pi_2(u^{-1}) \leq \sqrt{n}$. It follows that for any $S \subset l_2^n$ of dimension $> n - k$ we have

$$
\sqrt{n-k} = \pi_2(\text{Id}_S) \leq ||u_{|S}|| \pi_2(u^{-1}) \leq \sqrt{n} ||u_{|S}||
$$

hence $||u_{1s}|| \geq (1 - k/n)^{1/2}$ so that $a_k(u) \geq (1 - k/n)^{1/2}$. Taking $k = \lfloor n/2 \rfloor$, we deduce from (iii) that $l(u) \ge C^{-1} [n/2]^{1/2} 2^{-1/2}$. Then (recalling that $||u|| \le 1$), we deduce immediately from the results of [5] that there is a subspace $F \subseteq E$ with $\dim F \geq \delta_0 n$ and $d_F \leq 2$ where $\delta_0 = \beta \cdot C^{-2}$ for some numerical constant β . This proves that (iii) \Rightarrow (i). Finally, let us show that (iii) \Rightarrow (iv). Consider $(x_i)_{i \le n}$ in X satisfying (4). Let E be the span of $(x_i)_{i \leq n}$. Consider $u : l_2^* \to E$ defined by $u(\alpha) = \sum_{i=1}^{n} \alpha_i x_i$ $\forall \alpha \in \mathbb{R}^n$. Then, clearly u^{-1} satisfies $\pi_2(u^{-1}) \leq \sqrt{n}$ (indeed $u^{-1} = iv$ where $v : E \to l^*$ satisfies $||v|| \le 1$ by (4) and $i : l^* \to l^*$ is the identity map).

Now, if we assume (iii), $\exists S \subset l_2^n$ such that

dim
$$
S = [n/2]
$$
 and $||uP_s|| \leq C(2n^{-1})^{1/2}l(u)$.

Hence, we have

$$
[n/2] = \dim S = \text{tr}(u^{-1}uP_S)
$$

\n
$$
\leq \pi_2(u^{-1})\pi_2(uP_S)
$$

\n
$$
\leq n \|uP_S\|
$$

\n
$$
\leq C n^{1/2} 2^{1/2} l(u).
$$

Finally, we have $l(u) \geq (4C)^{-1} n^{1/2}$ (at least for n large enough), which establishes that (iii) \Rightarrow (iv).

REMARK. Using the results of [20], it is easy to give the following application of the preceding corollary: Let S be a K-convex subspace of a Banach space X , then, if X possesses the property $(*)$ above, the same is true for the quotient *x/s.*

COROLLARY 6. Let $1 \leq p \leq 2$. A Banach space X is of cotype 2 iff there is a δ *in* $]0,1[$ *such that* $d_{L_n(X)}(\delta) < \infty$.

PROOF. It is well known and easy to prove that X is of cotype 2 iff $L_p(X)$ is of cotype 2. Moreover, by [5] every cotype 2 space possesses the property (*). Therefore, the "only if" part is already known. Let us prove the "if" part. Assume that $L_p(X)$ satisfies the property (i) in Corollary 5. Then it must satisfy (iv) in the same statement. Let us denote by (r_n) the Rademacher functions.

Let us consider the subspace of $L_p(X)$ formed by all the functions of the form $\sum_{i=1}^{n} r_{i}x_{i}$ ($n \in \mathbb{N}, x_{i} \in X$). We denote by Rad(X) the closure of this space in $L_{p}(X)$.

Note that if $||x_i|| \ge 1$ for $i = 1, ..., n$, we have

$$
\sup|\alpha_i|\leq \bigg\|\sum \alpha_i r_i x_i\bigg\|_{L_p(X)}.
$$

Hence, by the property (iv),

$$
\sqrt{n} \leq C \bigg(\int \bigg| \sum_{\alpha_i} \alpha_i r_i x_i \bigg|_{L_p(X)}^2 d\gamma_n(\alpha) \bigg)^{1/2} \leq C \bigg(\int \bigg| \sum_{\gamma_i} r_i \alpha_i x_i \bigg|_{L_2(X)}^2 d\gamma_n(\alpha) \bigg)^{1/2}.
$$

By symmetry and homogeneity, this leads to

$$
\sqrt{n}\inf_{i\leq n}\|x_i\|\leq C\bigg(\int\bigg\|\sum \alpha_i x_i\bigg\|^2 d\gamma_n(\alpha)\bigg)^{1/2}
$$

It is known that this last inequality implies that X is of cotype 2 (cf. e.g. the argument included in the paper $[6]$ p. 2). $q.e.d.$

REMARK. Note that we only need that $Rad(X)$ satisfies (*) to conclude that X is of cotype 2.

We now come to the proof of Theorem 1. We will use the following result.

PROPOSITION 7. *There is a function* ψ : $]0,1[\rightarrow \mathbf{R}_{+}$ with the following property: *Let X be a Banach space, let* $v : X \rightarrow l_2^n$ *be an operator, then, for each* ε *in* [0,1], *there is a subspace* $S \subset X$ *such that* codim $S \leq \varepsilon n$ *and*

$$
||v_{|s}|| \leq \psi(\varepsilon) n^{-1/2} l(v^*).
$$

Moreover, $\psi(\varepsilon)$ tends to infinity as $O(\varepsilon^{-1})$ when $\varepsilon \rightarrow 0$.

This result was proved in [12] in an essentially equivalent formulation. It is enough for our purposes in the sequel. However, to obtain better estimates, it is worthwhile to note that in [15] an essentially sharp improvement is obtained on the order of growth of the function ψ , namely $\psi(\varepsilon)$ is $O(\varepsilon^{-1/2})$ when $\varepsilon \to 0$. The latter result can then be reformulated as follows: there is a constant C such that, for all operators $u: l_2^* \to X$ and for all k, there is a subspace $S \subset X^*$ of codimension less than k such that $||u^*|| \leq C k^{-1/2}$ *l*(*u*). This corresponds to an estimate similar to the one in Theorem 3 but with the so-called Kolmogorov numbers of u (see e.g. [16]), instead of the approximation numbers of u.

In the appendix at the end of this paper we include a proof of a slight refinement of Proposition 7.

We now turn to the proof of Theorem 1. Let E be a Banach space. Then for any operator $v: E \rightarrow l_2^n$, we define the dual norm to l

$$
l^*(v) = \sup\{\text{tr}(vu) \mid u : l_2^* \to E, l(u) \leq 1\}.
$$

We need to recall two facts.

FACT 1. For any *n*-dimensional space E, there is an isomorphism $u: l_2^* \rightarrow E$ such that $l(u) = l^*(u^{-1}) = \sqrt{n}$.

This is a result due to Lewis $[8]$, applied to the l -norm, as done previously in **141.**

FACT 2. There is an absolute constant K such that, for all $u : l_2^* \rightarrow E$, we have

$$
l(u) \leq l^*(u^*)K\log(1+d_\varepsilon).
$$

This follows from the fact that the K -convexity constant (using here Gaussian variables instead of the Rademacher functions) is majorized by $K \text{Log}(1 + d_E)$ for some absolute constant K . For a proof of the latter, we refer the reader to [18] or [14]. Once this has been clarified, Fact 2 is merely a reformulation of the fact that the orthogonai projection onto the span of independent Gaussian random variables has norm less than $K \text{Log}(1 + d_E)$ on the space $L_2(E)$; see [4] for more details.

PROOF OF THEOREM 1. Let X be such that $d_X(\delta_0) < \infty$. We will use the property obtained in Theorem 3. Let δ be any number in [0,1] and let $\varepsilon = 1 - \delta$. Let E be any *n*-dimensional subspace of X .

Using Fact 1 above, we find an isomorphism $u: l_2^m \rightarrow E$ such that $l(u)$ = $l^*(u^{-1}) = \sqrt{n}$. By Theorem 3, there is a subspace $H \subset l_2^n$ such that codim $H \leq \frac{1}{2} \varepsilon n$ such that

(6)
$$
\|u_{1H}\| \leq C''(2/\varepsilon)^{1/2} n^{-1/2} l(u).
$$

We will denote by $\vert \cdot \vert$ the Euclidean norm on l^* . We now introduce a number $p > 0$ (to be specified later) and we equip the space E with a new norm defined simply by

$$
\forall x \in E \qquad \|x\|_{\rho} = \|x\| + \rho |u^{-1}x|.
$$

Let $E_1 = u(H) \subseteq E$. By (6), we have

(7)
$$
\forall x \in E_1 \qquad \rho |u^{-1}x| \leq ||x||_{\rho} \leq (C''(2/\varepsilon)^{1/2} + \rho) |u^{-1}x|.
$$

Let us denote by E_1^e the space E_1 equipped with the norm $\|\cdot\|_p$. By (7), we have

$$
d_{\varepsilon\zeta}\leq 1+C''(2/\varepsilon)^{1/2}\rho^{-1}.
$$

Let us denote by $j: E_1^e \rightarrow E_1$ the inclusion map (i.e. the identity operator). Obviously, $||j|| \leq 1$, hence by the ideal property

$$
l^*(u^{-1}j) \leq l^*(u^{-1}) = \sqrt{n}.
$$

By Fact 2, it follows that

$$
l((u^{-1}j)^*) \leq A_{\rho} \sqrt{n}
$$

with $A_{\rho} = K \text{Log}(2 + C''(2/\varepsilon)^{1/2} \rho^{-1}).$

We now apply Proposition 7 to the operator $v = u^{-1}i : E_i^o \rightarrow l_i^n$. This implies that there is a subspace $S \subseteq E_1^{\rho}$ with codim $S \leq \frac{1}{2} \varepsilon n$ such that

$$
||u^{-1}j_{|S}|| \leq \psi(\varepsilon/2)A_{\rho}.
$$

This means that

$$
\forall x \in S \qquad (\psi({\frac{1}{2}}\varepsilon)A_{\rho})^{-1} |u^{-1}x| \leq ||x|| + \rho |u^{-1}x|
$$

hence

$$
(\psi({\tfrac{1}{2}}\varepsilon)A_{\rho})^{-1}\{1-\rho A_{\rho}\psi({\tfrac{1}{2}}\varepsilon)\}\big|u^{-1}x\big|\leq||x||.
$$

We now observe that (δ and hence $\varepsilon = 1 - \delta$ remaining fixed) we have $\rho A_o \rightarrow 0$ when $\rho \rightarrow 0$. Therefore, we can choose $\rho = F(\delta)$ (a function of δ only) such that

$$
\rho A_{\rho}\psi(\varepsilon/2)=\tfrac{1}{2}.
$$

We have then

$$
(9) \hspace{1cm} \forall x \in S \hspace{0.3cm} \rho \, | \, u^{-1}x \, | \leq \|x\|.
$$

In the other direction, since $S \subset E_1^{\rho}$, we have by (6)

(10) *VxES IlxU<=C"(2/e)'/21u-'x I.*

Finally, let us consider S as a subspace of E and let us denote by $\tilde{S} \subset E$ the corresponding normed space. By (9) and (10) , we have

$$
d_{\hat{s}} \leq \rho^{-1} C'' (2/\varepsilon)^{1/2}.
$$

Moreover dim $\tilde{S} = \dim S \ge \dim E_1 - \frac{1}{2} \varepsilon n$, hence

$$
\dim \tilde{S} \geq n - \varepsilon n = \delta n.
$$

Let us now come back to the function $\rho = F(\delta)$ determined implicitly by (8). We have

$$
\rho\psi(\varepsilon/2)K\log(2+C''(2/\varepsilon))^{2/2}\rho^{-1})=\tfrac{1}{2}.
$$

Let $\rho = t(\varepsilon/2)^{1/2}$. Using the fact [15] that $(\frac{1}{2}\varepsilon)^{1/2}\psi(\frac{1}{2}\varepsilon)$ remains bounded when $\varepsilon \rightarrow 0$, we find that $t = (2/\varepsilon)^{1/2} F(\delta)$ satisfies for some constant C_1

$$
tC_1\mathrm{Log}(2+2C''/\varepsilon t)\geq \frac{1}{2}
$$

and this implies, for some numerical constant $C_2 > 0$,

 $t \ge C_2/|\text{Log}(C''/\varepsilon)|$ when $\varepsilon \to 0$.

Finally, substituting in (11), we obtain

$$
d_{\hat{s}} \leq \frac{C_3 C''}{(1-\delta)} \left| \text{Log} \frac{C''}{1-\delta} \right|
$$

for some numerical constant C_3 , when $\delta \rightarrow 1$.

Equivalently, $d_X(\delta) \leq C_3 C''(1-\delta)^{-1} |\text{Log } C''(1-\delta)^{-1}|$, which completes the proof of Theorem 1.

In the sequel, we will need to recall the notations in use for the so-called entropy numbers and Gelfand numbers of a compact operator $u : X \rightarrow Y$ between Banach spaces (cf. e.g. [16]).

For any compact subset $K \subset Y$, we denote by $N(K, \varepsilon)$ the smallest number of open balls of radius ε which cover K.

We then define

$$
e_k(u) = \inf\{\varepsilon > 0 \,|\, N(u(B_x), \varepsilon) \leq 2^k\}.
$$

Moreover, we define

$$
c_k(u) = \inf\{\|u_{|F}\| \mid F \subset E, \text{ codim } F < k\}.
$$

Note that we have obviously

$$
c_k(u)\leq a_k(u).
$$

We now pass to the proof of Theorem 2. We will first establish the following result.

THEOREM 8. *Let E be an n-dimensional space. Assume that there is a constant C* and α > 0 such that, for all $k \leq n$, there is a subspace $F \subset E$ of codimension less *than k such that*

$$
d_F \leq C(n/k)^{\alpha}.
$$

Let $v: E \rightarrow l_2^n$ be an operator. We have then

$$
(12) \hspace{1cm} e_n(v) \leq C \rho_\alpha \frac{\pi_2(v)}{\sqrt{n}}
$$

where ρ_{α} *is a constant depending only on* α *.*

Consequently,

(13)
$$
\left(\frac{\mathrm{vol}(v(B_E))}{V_n}\right)^{1/n} \leq 2C\rho_\alpha \pi_2(v)n^{-1/2}
$$

where V, denotes the volume of the n-dimensional Euclidean ball.

To prove Theorem 8 we will use the following lemma due to Carl [2]. We sketch the proof for the convenience of the reader.

LEMMA 9. For each $\alpha > 0$, there is a constant λ_{α} such that every operator $v: E \rightarrow F$ between Banach spaces satisfies:

(14)
$$
\forall n \qquad \sup_{k \leq n} k^{\alpha} e_k(v) \leq \lambda_{\alpha} \sup_{k \leq n} k^{\alpha} c_k(v).
$$

PROOF. Note that we may embed F into an L_x space (isometrically) without changing the left-hand side of (14). Now, if $F = L_x$ then $c_k(v) = a_k(v)$ (by the extension property of L_x) so that it is enough to prove (14) with $a_k(v)$ in the place of $c_k(v)$.

Let us assume that $\sup_{k \leq n} k^{\alpha} a_k(v) \leq 1$, and that $n = 2^N$. Then for every $m \leq N$, there is an operator v_m such that

$$
rank(v_m) < 2^m
$$
 and $||v - v_m|| \leq 2^{-ma}$.

Let $v_0 = 0$. Then

$$
v = \sum_{m=1}^{N} (v_m - v_{m-1}) + v - v_N.
$$

Let $\Delta_m = v_m - v_{m-1}$. We have

(15) rank $(\Delta_m) < 2^{m+1}$ and $\|\Delta_m\| \le 2^{-(m-1)\alpha} \cdot 2$.

Let $K = v(B_E)$, let $K_m = \Delta_m(B_E)$, and let $\varepsilon_m > 0$, to be specified later. Since the dimension of K_m is majorized by (15), we find, using a classical estimate (cf. e.g. [51 p. 58),

 $\forall \varepsilon > 0$ $N(K_m, \varepsilon || \Delta_m ||) \leq (1 + 2\varepsilon^{-1})^{2^{m+1}}.$

Observe that for $0 < r < 1$, we have

$$
\forall \varepsilon > 0 \quad \forall d \in \mathbb{N} \qquad (1+2/\varepsilon)^d \leq \exp(2/\varepsilon)^r d r^{-1}.
$$

Hence, since $K \subset \sum_{m=1}^{N} K_m + (v - v_N)(B_E)$,

$$
N\Big(K, \sum_{m=1}^{N} \varepsilon_m \|\Delta_m\| + 2^{-N\alpha}\Big) \leq \prod_{m=1}^{N} N(K_m, \varepsilon_m \|\Delta_m\|)
$$

$$
\leq \exp \sum_{m=1}^{N} 2^{m+1} r^{-1} (2\varepsilon_m^{-1})'.
$$

Now, consider a number $\beta > \alpha$ and r such that $0 < r < 1$ and $r < 1/\beta$. Let λ be any positive number. We take $\varepsilon_m = \lambda 2^{m\beta} 2^{-N\beta}$.

By elementary computations, we find constants ρ' and ρ'' depending only on

 α , β and r such that

$$
N(K, \lambda \rho' 2^{-N\alpha}) \leq \exp \lambda^{-r} \rho'' 2^N.
$$

Choosing $\lambda^{-r} = (\rho^r)^{-1} \text{Log } 2$, we finally obtain

$$
e_n(v)\leqq \lambda_\alpha n^{-\alpha}
$$

for some constant λ_{α} depending only on α (we take for instance $\beta = 2\alpha$ and $r = (2\alpha + 1)^{-1}$).

Note that we also obtain an estimate of the form

$$
e_{\lceil \delta n \rceil}(v) \leq \lambda_{\alpha} \delta^{-1/n} n^{-\alpha}
$$

for $0 < \delta < 1$.

By homogeneity, we have proved that

$$
\forall n \geq 1 \qquad n^{\alpha} e_n(v) \leq \lambda_{\alpha} \sup_{k \leq n} k^{\alpha} c_k(v)
$$

which is equivalent to (14).

PROOF OF THEOREM 8. We first recall that if w is an operator between two Hilbert spaces, then $\pi_2(w)$ coincides with the Hilbert-Schmidt norm of w, or equivalently

$$
\pi_2(w) = \left(\sum_{1}^{\infty} a_k(w)^2\right)^{1/2} \quad \text{(cf. e.g. [16]).}
$$

It follows that for any $w: F \rightarrow l_2^n$ we have

(16)
$$
\left(\sum a_k(w)^2\right)^{1/2} \leq d_F \pi_2(w).
$$

Now consider $v : E \to l_2^n$ as in Theorem 8. Let $F \subset E$ be a subspace such that codim $F < k$ and $d_F \leq C(n/k)^{\alpha}$. Then, by (16) we have

$$
k^{1/2} a_k(v_{|F}) \leq d_F \pi_2(v_{|F}) \leq d_F \pi_2(v).
$$

Therefore, there is a subspace $F_1 \subset F$ such that dim $F - \dim F_1 < k$ for which

$$
||v_{|F_1}|| \leq d_F k^{-1/2} \pi_2(v).
$$

This implies

$$
c_{2k}(v)\leq d_Fk^{-1/2}\pi_2(v).
$$

Therefore

$$
\sup_{k\leq n} k^{\alpha+1/2} c_k(v) \leq C 2^{\alpha+1/2} n^{\alpha} \pi_2(v).
$$

By Lemma 9

$$
e_n(v) \leq \lambda_{\alpha+1/2} C 2^{\alpha+1/2} n^{-1/2} \pi_2(v).
$$

This concludes the proof of Theorem 8 since the last assertion is immediate: by the definition of $e_n(v)$ we have vol $(v(B_E)) \leq 2^n V_n e_n(v)^n$, so that (13) follows from (12).

REMARK. In the particular case when X is of cotype 2 the preceding proof simplifies a great deal. Let us streamline the argument. We consider $E \subset X$ and $u: l_2^* \to E$ such that $||u|| \leq 1$ and $\pi_2(u^{-1}) \leq \sqrt{n}$. Let us denote by $C_2(E)$ the (Gaussian) cotype 2 constant of E. We use first an argument similar to the one for Theorem 1; we introduce the norm $||x||_p = ||x||_p + p||u^{-1}x||$, we let $E =$ $(E, \|\ \|_o)$, and we observe that

$$
l((u^{-1}:E_{\rho}\to l_2^{n})^*)\leq K\log(2+1/\rho)C_2(E)n^{1/2}
$$

for some numerical constant K. Therefore, by Proposition 7 with the improvement of [15], there is a subspace $S \subset E_{\rho}$ with codim $S \le k$ such that

$$
||u^{-1}: S \to l_2^n || \leq K'(n/k)^{1/2} Log(1+1/\rho)C_2(E).
$$

Then, proceeding as in the proof of Theorem 1, we find

$$
c_k(u^{-1}) \leq K''(n/k)^{1/2} C_2(E) \text{Log}[C_2(E)(n/k)^{1/2} + 1]
$$

$$
\leq K''' C_2(E) [\text{Log}(C_2(E) + 1)](n/k)
$$

hence by Lemma 9

$$
e_n(u^{-1}) \leq K_4 C_2(E) \text{Log}(C_2(E)+1)
$$

and *afortiori*

$$
\text{vr}(E) \leq 2K_4C_2(E)\text{Log}(C_2(E)+1)
$$

for some numerical constant $K₄$.

It is conceivable that an estimate such as

$$
\text{vr}(E) \leq \text{constant} \cdot C_2(E) (\text{Log } C_2(E) + 1)^{1/2}
$$

holds. Note that (because we are using the Gaussian cotype 2 constant)

$$
C_2(l^*_*) \approx (n/\text{Log } n)^{1/2}
$$
 and $\text{vr}(l^*_*) \ge C\sqrt{n}$

so that such an estimate would be optimal.

REMARK. In the preceding remark, we proved in passing that for any δ in $]0,1[$ there is a subspace $S \subseteq E$ with dim $S \geq \delta n$ and

$$
d_s \leq K_s C_2(E) (1-\delta)^{-1/2} Log[C_2(E) (1-\delta)^{-1/2} + 1]
$$

(take $k \approx (1 - \delta)n$ in the preceding reasoning).

Similar estimates (with a worse dependence of δ) appeared already in [3] and [12]. The above estimate was obtained recently in [15], but our argument has the advantage of avoiding the iteration technique used in all these papers.

REMARK. It is clear from the proof of Theorem 8 that $\pi_2(v)$ can be replaced by

$$
\sup_{k} k^{1/2} \sup_{\substack{w:\mathcal{L}_2^n\to E\\||w||\leq 1}} a_k(vw).
$$

The latter quantity appears in the paper of Pietsh on the so-called Weyl numbers; cf. [17].

PROOF OF THEOREM 2. The implication (i) \Rightarrow (ii) in Theorem 2 is now an easy corollary of Theorem 1 and Theorem 8. The implication (ii) \Rightarrow (i) is already known; cf. [23].

It is also possible to adapt the argument of [1] to show that Theorem 1 implies Theorem 2. However, our proof using Theorem 8 seems simpler and gives more flexibility for the choice of the ellipsoid.

In the last part of this paper, we study the duals of the Banach spaces considered in Theorem 1 assuming moreover that they are K-convex, or equivalently (cf. [19]) that they do not contain l_1^m 's uniformly. We recall that a Banach space X is called K -convex if the orthogonal projection onto the closed span of the Rademacher functions in $L_2([0,1])$ defines a bounded operator on $L_2([0,1];X)$.

THEOREM 10. *The following assertions are equivalent for a space X.*

(i) *X* is *K*-convex and there is a δ_0 in [0,1] such that $d_x \cdot (\delta_0) < \infty$.

(ii) *For all* δ *in* [0,1], *there is a constant* C_{δ} *such that, for any subspace* $S \subset X$ *and any operator u* : $S \rightarrow l_2^n$, there is an orthogonal projection P : $l_2^n \rightarrow l_2^n$ with rank $P \geq \delta n$ and an operator $\tilde{u}: X \rightarrow l_2^n$ such that $\tilde{u}_{1s} = Pu$ and $\|\tilde{u}\| \leq C_s \|u\|$.

(iii) *For some 6 in*]0,1[, *the same as* (ii) *holds.*

PROOF. (i) \Rightarrow (ii). We will use the following fact:

If a space Y is K-convex there is a constant λ with the following property: for any subspace $M \subset Y$, let $\sigma: Y \to Y/M$ be the quotient map, for any $v: l_2^n \to Y/M$, there is a "lifting" $\tilde{v}: l_2^n \to Y$ such that $\sigma\tilde{v} = v$ and $l(\tilde{v}) \leq \lambda l(v)$. This follows rather easily from the definition of K -convexity. In fact, the preceding property even holds for Y arbitrary assuming only that M is K-convex; the constant λ will then depend on M. See [20] for details.

Now assume (i) and consider u as in (ii). Consider $u^*: I_2^n \to X^*/S^{\perp}$.

Obviously we have $l(u^*) \leq \sqrt{n} ||u^*|| = \sqrt{n} ||u||$. By the preceding property, there is an operator $(\widetilde{u^*})$: $l_2^n \rightarrow X^*$ such that (denoting by $\sigma : X^* \rightarrow X^*/S^1$ the quotient map) we have

(17)
$$
\sigma(u^*) = u^* \quad \text{and} \quad l(\tilde{u}^*) \leq \lambda l(u^*)
$$

$$
\leq \lambda \sqrt{n} ||u||.
$$

By Theorem 3, there is a constant C such that

$$
\operatorname{Sup} k^{1/2} a_k(u^*) \leq C l(u^*)
$$

hence we find

$$
a_k(u^*) \leq C \lambda (n/k)^{1/2} ||u||.
$$

Equivalently, there is an orthogonal projection $P: l_2 \rightarrow l_2$ with rank $P > n - k$ such that

(18)
$$
\|(\widetilde{u^*})P\| \leq C\lambda (n/k)^{1/2} \|u\|.
$$

Let then $w = (u^*)^* : X \rightarrow l_2^n$.

We have clearly by (17)

$$
w_{|S} = u, \qquad \text{hence } P w_{|S} = P u
$$

and by (18), $||Pw|| \leq C\lambda (n/k)^{1/2} ||u||$.

This implies (ii). (Note that we find $C_6 \in O((1 - \delta)^{-1/2})$). $(ii) \Rightarrow (iii)$ is trivial.

Let us prove that (iii) \Rightarrow (i). Assume (iii).

Note that, by Dvoretzky's theorem (see [5]), (iii) implies that X contains uniformly complemented $l_2^{\prime\prime}$'s and even that X is locally π -euclidean. Hence, by [19] corollary 2.11, X must be K-convex. We now prove that (iii) implies that X^* possesses the second property in Corollary 5. Consider an operator $u : l_2 \to X^*$. Let δ be as in (iii).

By Proposition 7, there is a subspace $S \subset X$ with codim $S < \delta n/2$ such that (for some constant C)

$$
||u^*_{|S}|| \leq Cl(u)n^{-1/2}.
$$

By (iii), there is a projection $P: l_2^n \to l_2^n$ with rank $P > \delta n$ and an operator $v: X^* \to l_2^n$ such that $v_{|S} = Pu^*_{|S}$ and $||v|| \le C'||u^*_{|S}||$ for some constant C'. Returning to u we find

$$
(Pu^*-v)_{|S}=0
$$

hence rank $(Pu^* - v) < \delta n/2$.

Finally, if $T = u^* - v$

$$
rank(T) < rank(Pu^* - v) + rank(1 - P) < (1 - \delta/2)n
$$

and $||u - T^*|| = ||v|| \leq C'CI(u)n^{-1/2}$, so that

 $a_k(u) \le C'Cl(u)n^{-1/2}$ with $k = [(1 - \frac{1}{2}\delta)n]$.

This shows by Corollary 5 that X^* satisfies (i) and this concludes the proof of Theorem 10.

REMARK 11. In [9], Maurey proved that any space X of type 2 possesses the following property:

 \int There is a constant C such that for any subspace $S \subset X$ and for $(+)$ $\{$ any *n*, any operator $u: S \rightarrow l_2^n$ admits an extension $\tilde{u}: X \rightarrow l_2^n$ U such that $\|\hat{u}\| \leq C \|u\|$.

It is not known whether, conversely, the property $(+)$ implies that X is of type 2. However, the preceding result gives some information in that direction. Indeed, by [19] a space X is of type 2 iff X is K-convex and X^* is of cotype 2. The preceding theorem says that property (iii) [which is a weak form of $(+)$ above] holds iff X is K-convex and X^* satisfies a weak form of cotype 2 as described in Corollary 5. By the remark after Theorem 3, we find that if X satisfies the properties in Theorem 10 (in particular if X satisfies $(+)$) then there is a constant *B"* such that the type 2 constant of any n-dimensional subspace of X is majorized by $B''Log(n + 1)$. Moreover, we have

COROLLARY 12. Let X be a Banach space. Let $2 \le a < \infty$. Then X is of type 2 *iff the space L_q* ([0,1]; *X*) possesses the property (+).

PROOF. If X is of type 2, so is $L_q(X)$, hence $L_q(X)$ satisfies (+) by Maurey's theorem [9]. Conversely, if $L_q(X)$ satisfies ($+$) then by Theorem 10 (and an easy "localization" argument), if $1/p + 1/q = 1$, $L_p(X^*)$ satisfies property (i) in Theorem 10. By Corollary 6, this implies that X^* is of cotype 2. Since by property $(+) X$ cannot contain l_1^m 's uniformly, it must be K-convex and hence of type 2, by [19].

Note that in Corollary 12 again it is enough to assume that $Rad(X)$ possesses $(+)$ to conclude that X is of type 2.

Appendix

We will give below a different proof of Proposition 7 with a slight refinement. Let $v: X \rightarrow l_2^n$ be an operator; we define

$$
S(v) = \sup_{k \geq 1} \sqrt{k} e_k(v).
$$

Note that this quantity is equivalent to $\sup_{\epsilon>0} \epsilon (\text{Log } N(v(B_x), \epsilon))^{1/2}$.

By a well-known result in the theory of Gaussian processes, we have

$$
S(v) \leq \mu_1 l(v^*)
$$

for some absolute constant μ_1 .

This result is due to Sudakov [21] and follows from a classical lemma of Slepian. This shows that the next statement improves Proposition 7.

PROPOSITION 7'. Let $v : X \rightarrow l_2^n$ be as above. Then, for each ε in [0,1], there is a *subspace* $S \subset X$ with codim $S \leq \varepsilon n$ such that

$$
||v_{|S}|| \leq \mu_2 \varepsilon^{-1} n^{-1/2} S(v)
$$

for some absolute constant μ_2 .

The proof is based on the following.

LEMMA. *There are numerical constants* $a > 0$, $b > 0$ *satisfying the following. Let* $\{y_i\}$ *be a subset of* I_2^n *with at most* 2^{ak} *elements,* $k \leq n$ *. Then there is an orthogonal projection P on* I_2^* *with rank k - 1 such that*

(20)
$$
||Py_i|| \geq b(k/n)^{1/2}||y_i|| \quad \text{for all } i.
$$

PROOF. This result is proved (but not stated) in [7] using the fact that the average of $||P_{v_i}||$ over all projections P of rank $(k-1)$ is equivalent to $(k/n)^{1/2}$ y_i and moreover that the deviation of $||Py_i||$ from this average is bounded by a suitable exponential estimate.

PROOF OF PROPOSITION 7'. Assume that $S(v) < 1$. Let $1 \le k \le n$, $m = [ak]$ and $N = 2^m$. By definition of $S(v)$ this implies that there are N points $(x_i)_{i \leq N}$ in B_x such that $\forall x \in B_x$ $\exists i \leq N$ such that $||vx - vx_i|| < m^{-1/2}$. Let $v_i = vx_i$. By the preceding lemma, there is a projection P of rank $k - 1$ such that (20) holds. Let $S = \text{Ker } Pv$. Note that codim $S \leq k - 1 < k$. Moreover, if x is in $S \cap B_{x}$, for some $i \le N$ we have $||vx - vx_i|| < m^{-1/2}$. Hence

$$
|| vx || < m^{-1/2} + || vx_i ||.
$$

Hence by (20)

$$
\begin{aligned} &< m^{-1/2} + b^{-1} (n/k)^{1/2} \| Pvx_i \| \\ &= m^{-1/2} + b^{-1} (n/k)^{1/2} \| Pv(x - x_i) \| \\ &\le m^{-1/2} + b^{-1} (n/k)^{1/2} \cdot m^{-1/2} \end{aligned}
$$

so that finally

 $||v_{0s}|| \leq b'(n/k) \cdot n^{-1/2}$ for some numerical constant b'.

In other words, we have proved (by homogeneity)

$$
\sup_{1\leq k}kc_k(v)\leq b'n^{1/2}\sup_{k\geq 1}\sqrt{k}e_k(v),
$$

and this clearly is equivalent to (19). $q.e.d.$

REFERENCES

1. J. Bourgain and V. D. Milman, *On Mahler' s conjecture on the volume of a convex symmetric body and its polar,* preprint I.H.E.S., March 1985; cf. also *Sections euclidiennes et volume des corps convexes sym~triques,* C. R. Acad. Sci. Paris A 300, Ser. I (1985), 435--438.

2. B. Carl, *Entropy numbers, s-numbers, and eigenvalue problems,* J. Funct_ Anal. 41 (1981), 290-306.

3. S. Dilworth, *The cotype constant and large Euclidean subspaces of normed spaces,* preprint.

4. T. Figiel and N. Tomczak-Jaegerman, *Projections onto Hilbertian subspaces of Banach spaces,* Isr. J. Math. 33 (1979), 155-171.

5. T. Figiel, J. Lindenstrauss and V. D. Milman, *The dimension of almost spherical sections of convex bodies,* Acta Math. 139 (1977), 53-94.

6. R. C. James, *Nonreflexive spaces o[type* 2, Isr. J. Math. 30 (1978), 1-13.

7. W. B. Johnson and J. Lindenstrauss, *Extensions of Lipschitz mappings into a Hilbert space,* Proc. Conf. in Honour of S. Kakutani.

8. D. Lewis, *Ellipsoids defined by Banach ideal norms,* Mathematika 26 (1979), 18-29.

9. B. Maurey, *Un théorème de prolongement*, C. R. Acad. Sci. Paris A 279 (1974), 329-332.

10. V. D. Milman, *New proof of a theorem of A. Dvoretzky on sections of convex bodies*, Funct. Anal. Appl. 5 (1971), 28-37.

11. V. D. Milman, *Almost Euclidean quotient spaces of subspaces of finite dimensional normed spaces,* Proc. Am. Math. Soc. 94 (1985), 445-449.

12. V. D. Milman, *Random subspaces of proportional dimensional of finite dimensional normed* spaces; approach through the isoperimetric inequality (Séminaire d'Analyse Fonctionnelle 84/85, Universit6 Paris VII, Paris), *Banach Spaces,* Missouri Conf., Proceedings, 1984, Springer Lecture Notes in Math., 1166, pp. 106-115.

13. V. D. Milman, *Volume approach and iteration procedures in local theory of normed spaces, Banach Spaces,* Missouri Conf., Proceedings, 1984, Springer Lecture Notes in Math., 1166, pp. 99-105.

14. V. D. Milman and G. Schechtman, *Asymptotic theory of finite dimensional normed spaces*, Springer Lecture Notes, to appear.

15. A. Pajor and N. Tomczak-Jaegerman, *Subspaces of small codimension of finite-dimensional Banach spaces,* to appear.

16. A. Pietsch, *Operator Ideals,* North-Holland, Amsterdam, 1978.

17. A. Pietsch, *Weyl numbers and eigenvalues of operators in Banach spaces,* Math. Ann. 247 (1980), 149-168.

18. G. Pisier, Un théorème de factorisation pour les opérateurs linéaires entre espaces de Banach, Ann. Ecole Nat. Sup. 13 (1980), 23-43.

19. G. Pisier, *Holomorphic semi-groups and the geometry of Banach spaces*, Ann. Math. 115 (1982), 375-392.

20. G. Pisier, *Quotients of Banach spaces of cotype q*, Proc. Am. Math. Soc. 85 (1982), 32-36.

21. V. N. Sudakov, *Gaussian random processes and measures of solid angles in Hilbert space*, Soviet Math. Dokl. 12 (1971), 412-415.

22. S. Szarek, *On Kašin almost Euclidean decomposition of l*^{*}, Bull. Acad. Polon. Sci. 26 (1978), 691-694.

23. S. Szarek and N. Tomczak-Jaegerman, *On nearly Euclidean decompositions [or some classes o[Banach spaces,* Compos. Math. 40 (1980), 367-385.